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Apr 27, 2001 (6 Years Ago): The lab had a party to celebrate the 

beginning of Run II

May 2005 (1 Years Ago): The lab had a party to celebrate 1 fb-1

delivered to each experiment.

Oct 2006 (6 Months Ago): 2 fb-1 delivered. No party??

- Same day: first 36x36 store in the Tevatron (#449) 

- Luminosity of ~1x1030

- From a stack in the Accumulator of 74x1010 antiprotons.

- Store #4666

- Luminosity of ~1.6x1032

- From a stash in the Recycler of 243x1010 antiprotons.

Now : 2.85 fb-1 delivered. Next party at 10 fb-1?

- Store #5376

- Luminosity of ~2.7x1032
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Both Experiments are close to 2.5 fb-1 collected!!

Probably no party at 3 fb-1 delivered either…

Thanks to the Fermi 

Accelerator Division!



What Can You Do With That Data?
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http://www-cdf.fnal.gov/physics/new/top/2006/mass/ljets_tmt/pt_lept_compare2.eps
http://www-cdf.fnal.gov/physics/new/top/2006/mass/ljets_tmt/pt_tbar_compare2.eps
http://www-cdf.fnal.gov/physics/new/top/2006/mass/ljets_tmt/residmass_vsjes_canv.eps
http://www-cdf.fnal.gov/physics/new/top/2006/mass/dil_kin/Pictures/Blessed/data_wMC_wLogFit_scaled.gif
http://www-cdf.fnal.gov/physics/new/top/2006/mass/dil_kin/Pictures/Blessed/pe_diffmass_bless.gif


But Only If You Have CDF & DØ…
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Excellent Muon ID Capability

Large Tracking Acceptance (|h|<2-3)

Excellent Tracking Resolution

High Rate L1 Accept Rate (B Physics)

Silicon detectors for precision tracking

Solenoid for pT measurement

High bandwidth multi-level trigger systems.

Calorimitry

Muon System



Tevatron Collider Physics
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Gauge Sector

Flavor Sector

Electro-weak Symmetry Breaking

Dark Matter

Dark Energy 

Neutrino Mass/Oscillation


?

?

Complete the Standard Model

Precision Measurements (BSM hunt)

The Hunt for New Phenomena







MW, Mtop, …

Cross Sections sW, sZ, stt, st, …

Heavy Flavor Production & Decays

Higgs

Supersymmetry, Large Extra Dimensions

New Guage Bosons

New Fermions

…

http://en.wikipedia.org/wiki/Image:Particle_chart.jpg


Down The Ladder…
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1995

2007

It is getting harder!

Top quark observation in 1995

Single Top Quark Evidence 2007

WW, WZ, ZZ…

Higgs…



The Top 

Quark



The Tevatron Lab: Top Quark
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Wealth of information to be extracted 

from the top quark system!

• Discovered in 1995

• Only place for direct measurement is 

the Tevatron

• Much heavier than expected

• Implications?

Vtb

Single Top Production

Top Cross Section

Top Mass Measurement



Top Cross Section
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Re-Re discovery of 

the top quark…

Classify our channels by the W decay mode

WW  llnlnl - dilepton

WW  lnlqq – letpon + jets

WW  qqqq – all hadronic

CDF dilepton

Increase acceptance: allow second lepton 

to be just a track

Close to a x2 increase in acceptance

For a counting experiment the S/B is 5% 

better.

s(ttdilepton+X) = 8.3 ± 1.5(stat) ± 1.0(syst) ± 0.5(lumi) pb



Top Cross Section Summary
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The Top Mass
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Measurement Techniques

Template Methods compare data Mt

distributions to similar ones generated 

with a variety of MC at different Mts.

Event-by-Event. Weight events in final Mt

distribution according to their similarity to 

signal or background.

Currently Giving Smallest Errors

Mt is a fundamental parameter of the SM

Correlated with MH via loop corrections



The Top Mass
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The Matrix Element Method

Inverted Monte Carlo: what is the differential cross section that a particular event final 

state could have come from a signal matrix element or a background matrix element. 

What is likelihood of a 

particular parton configuration?

What is the chance that the final 

state partons (y) could produce 

the measured objects (x).

Parton Distribution Functions

l

t
t

b

qb
l

nl



Top Mass
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New trick in tool box: In-stiu Jet Energy Scale (JES) calibration

JES is normally determined on photon+jet events.

Let JES float: another parameter similar to Mt.

Constrain JES to best of knowledge, if possible (D0).

This works because we 

know the W mass better 

than we know the JES at 

these jet energies!

Mtop = 170.9 ± 2.2 (stat+JES) ± 1.4 (syst) GeV/c2

CDF (fit of Mtop, ftop, and JES):

DØ (fit of Mtop and JES):

Mtop = 170.5 ± 2.5 (stat+JES) ± 1.4 (syst) GeV/c2

Mtop = 170.5 ± 2.4 (stat+JES) ± 1.2 (syst) GeV/c2

(0+1+2 tags)

(1+2 tags)

Lepton + Jets

http://www-cdf.fnal.gov/physics/new/top/2006/mass/ljets_meat_1fb/data_all.eps


Top Mass Combination
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Run 2 expectation: ±1 GeV

dilepton

All hadronic

lepton + jets

Very few backgrounds in SM, 

but relatively small statistics 

and two neutrinos add 

ambiguity.

Largest fraction of production, 

but multijet backgrounds are 

very large

A perhaps happy compromise. 

Currently yields best 

measurements (but all are 

competitive).



Single Top Production
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Direct Access to the W-t-b coupling (sst)

Measure Vtb of the CKM directly

CKM Unitarity

Sensitive to new resonances: W’, top pions, 

SUSY, FCNC, anomalous couplings...

0.88 ± 0.11 pb

“s-channel”

1.98 ± 0.25 pb

“t-channel”
W+Jets – s = 1000 pb

tt – s = 7 pb

QCD multi-jet background/jet mistaken ID

Typical for Top: Lepton, missing ET, and jets



Sophisticated Separation Techniques
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e+jets, 1 

tag, 2 jets

The estimated systematic error is larger than the 

expected signal!

A simple counting experiment 

isn’t going to work!

Decision Tree

Matrix Element

Bayesian Neural Network

Neural Network

Likelihood

Matrix Element



Monte Carlo Trained Techniques
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Train on MC signal and background to separate signal and background

DT(e,2j,1T)

Decision Tree(DT): Branch at each node 

depending on a selection cut. Each leaf 

contains a purity determined on MC: the 

result of the DT discriminate. Boosting re-

trains to improve incorrect assignments.

Neural Network (NN): functional combination 

with weights determined by training.

Likelihood: Combined likelihood of multiple 

variables, all with some minimal separation.

• Analyzer must carefully pick variables to increase 

separation.

• Training and over training

• Very Fast to redo the analysis.



Matrix Element Technique
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The probability a measured detector topology (x) is a particular process (M):

CTEQ6 Parton 

Distribution Functions

Leading Order ME 

from MadGraph and 

phase space & parton 

level cuts

Transfer 

Function: Map 

Detector to 

Partons

Use MC LO Matrix Element to predict probability an event is signal or background.

• Matrix Element should extract maximal separation 

information from event. But is only LO.

• Very slow: must integrate over all unknowns 

(minutes/event)

http://www-cdf.fnal.gov/physics/new/top/2006/SingleTop/ME_1FB/PRplots/epd_best_fit.eps


Results
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DØ CDF

Technique

Expected 

Sensitivity

Result & Sensitivity Expected 

Sensitivity

Result & Sensitivity

Neural 

Network

1.3s

(Bayesian )

ss+t = 5.0 +1.9 
-1.9 pb

2.2s

ss+t < 5.7 pb ss+t < 2.6 pb @ 95% CL

Likelihood ss+t < 2.9 pb ss+t < 2.7 pb @ 95% CL

Matrix 

Element

1.8s ss+t = 4.6 +1.8 
-1.5 pb

2.9s

2.5s ss+t = 2.7 +1.5 
-1.3 pb

2.3s

Decision 

Tree

2.1s ss+t = 4.9 +1.4 
-1.4 pb

3.4s

CDF has determined their results are compatible at the 6.5% level.



DØ Single Top Result Combination
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The analyses are not fully correlated

BLUE MetZhod

f = wDTDT+wMEME+wBNNBNN

Determine the weights such that the mean square error on f is minimal.

s(s+t) = 4.8 ± 1.3 pb

Use the SM Ensemble



Single Top Results
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Expected Significance: 2.2s



W+Jets
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To better top and Higgs searches we have to understand W+Jets and b-quarks at a new level

W+Jets Data comparison ALPJEN

• Normalize each jet multiplicity cross section

• Inspect behavior vs ET, jet-jet DR, jet-jet 

invariant mass.

b-jet Energy Scale (in Zbb events)

• 5674 ± 727 Zbb events in fit.

• Determine response relative to light quark 

JES

• Will help with Higgs and with Top

Z+Jets Too



Electro 

Weak



The W and Z Boson
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The W Mass And Width

First Run 2 Results!

Di Boson Production

1 fb-1 data sets have given the 

Tevatron to see WW, WZ, and 

evidence for ZZ.

SM Constraints to hunt for new physics

Wg Production

SM Constraints to hunt for new physics



W Mass
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Endurance 

sport!

The best way to 

make progress on 

MH constraints is 

better MW!

Muon pT

You really have to know 

everything about the event!

Recoil

(< 15 GeV)
Missing ET



W Mass
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RESBOS+WGRAF(NLO)

Fast Simulation

Backgrounds

Data

Detector Calibration

Templates

MT, ET, Missing ET

Binned likelihood 

fit

Muons



W Mass
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Combined Uncertainty:

± 48 MeV

CDF expects < 25 

MeV with data 

already collected



W Mass
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P(c2) = 44%

Effects:

World Average: 80.392  80398

World Uncertainty: 0.029  0.025

Higgs: 85+39
-28  80+36

-26

From 200 pb-1!

A lot of work ahead!

Best Single Measurement in World!



EWWG Standard Model Fit

G. Watts (UW)

32

March 2007 Plots

Was 154 last summer!



W Width
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Muons

Use same infrastructure as for MW.

Use fast simulation with different widths

Normalize below fit region

Fit region

World Average Uncertainty: 60  47 MeV/c2



Di Boson Production
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Triple Gauge Couplings: Non-Abelian structure of the SM

Tight Limits from Tevatron

A few fb-1 before we are competitive

Complimentary: Higher center of mass, some non LEP 

couplings available.

Anomalous Couplings – New Physics

Backgrounds to SUSY, HWW, etc..

WW Observed

WZ

ZZ

Observed

Evidence…



Di Boson Production
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WW CDF: Observe 95 events

expected background of 37 ± 2

825 pb-1

s(WW)=13.6 ± 2.3(stat) ± 1.6 (sys) ± 1.2 (lumi)

DØ: Observe 25 events

on expected background of 8 ± 0.5

224-252 pb-1

s(WW)=14.6+5.8
-5.1(stat)+1.8

-3.0 (sys) ± 0.9 (lumi)
Good Agreement with NLO: 12.4 ± 0.8 pb

CDF: Observe 95 events

expected background of 2.7 ± 0.44

1.1 fb-1

s(WZ)=5.0+1.8
-1.6 pb

DØ: Observe 12 events

on expected background of 3.6 ± 0.20

760-860 pb-1

s(WZ)=3.9+1.9
-1.5 pb

WZ

Good Agreement with MCFM: 3.68 ± 0.25 pb

6 s

3.3 s



Di Boson Production
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ZZ

CDF: Search in both 4 lepton and 2 lepton+2 jet

s(ZZ) < 2.1 pb @ 95% CL

s(ZZ) = 0.8+0.7
-0.5 pb

DØ: Observe 1 events (4-lepton only)

on expected background of 0.17 ± 0.04

224-252 pb-1

s(ZZ) < 4.3 pb @ 95% CL

3.0 s

Good Agreement with SM: 1.4 ± 0.1 pb



Di Boson Summary
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ZZ



Wg Production
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Sensitive to the 

WWg coupling

Photon acceptance

CDF: ET > 7 GeV, |h|< 1.1

DØ: ET > 7 GeV, |h|<1.1 or 1.5<|h|<2.5

Photon ET and MWg shapes are in 

good agreement with predictions!



Wg Production
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The Cross Sections are also in good agreement



Radiation Amplitude Zero
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Three SM Tree Level Wg diagrams interfere

Zero production when center 

of mass angle (q*) satisfies:

Final state is electron or muon, missing ET, and a photon

Don’t reconstruct the neutrino 4-vector

Usually get two solutions for W’s rapidity: can’t 

calculate q*!

But you do expect a 

dip in the delta h!



Radiation Amplitude Zero
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c2 = 16 (12 dof)

Data is consistent with SM

Is the dip real?

• Split distribution into 3 bins

• Calculate probability that 

unimodal distribution could 

fluctuate to actual data.

• Dip exists at 90% CL.



QCD



Inclusive Photon and Jet Production
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1.1 fb-1

Photon + Jet

Triple Differential Cross Section Inclusive Jet Production Cross Section

Note Shown: Dijet Cross 

section from CDF



b-Jet Properties
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b-jets are backgrounds in top, 

Higgs, etc.

We tend to study exclusive B 

decays, not QCD production, 

however!

• What fraction of jets have 2 b’s vs

1 b

• Is the distribution of energy and 

calorimeter response the same? Y(r) = pT
R/pT

Profile of energy 

in the cone



b-Jet Properties
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CDF has also measured a photon+b-

jet production cross section

Data/MC Comparison

Correction account for 

contamination from non-b-jet jets

The fraction of 1-b quark jets 

vs. 2-b quark jets is different in 

LO and NLO generation

By adjusting the 1-b jet 

fraction by 0.2 (vs. what 

Pythia gave)

Best Fit



B Physics



Bottom Introduction
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The Tevatron is a b-factory

Both Experiments have an overwhelming number of results!

Lifetimes as well as mass measurements!



Bs Mixing
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We have measured all the Bs mixing parameters at the 

Tevatron now!

• Dms is consistent with the SM

• Precision measurement of Vtd/Vts

• DGs also consistent with the SM

• Charge Parity Violating phase fS

Dms = 17.77 ± 0.10 (stat) ± 0.07 (sys) ps-1

|Vtd|/|Vts| = 0.208+0.008
-0.007 (sys + stat)

Good agreement with SM

fs = -0.70+0.47
-0.39

Still Some Room for New Physics



Sb Search
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b-Baryons

Lb seen

LEP evidence for Xb
0 and Xb

±

Sb
(*)±  Lbp±

Lb Lc
+p-

Lc
+ pK-p+

Fully Hadronic Decay chain!

Displaced Track Trigger

m(Sb
+)=5808+2.0

-2.3 ± 1.7 MeV m(Sb
-)=5816 ± 1 ± 1.7 MeV

m(Sb
*+)=5829+1.6

-1.8 ± 1.7 MeV m(Sb
*-)=5827+2.1

-1.9 ± 1.7 MeV

Good Agreement with Theory



The B System
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Look for Excited B decays:

DØ & CDF: J/yK+

CDF: D0p+

DØ: Dm(B1-B2*) = 25 MeV

CDF: Dm(B1-B2*) = 4 MeV

Theory: Dm(B1-B2*) =14 MeV



Conclusion
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 BS, MW, and Single Top were big results this year!

 Experiments almost done updating 1 fb-1 results

 Internally concentrating on 2 fb-1 results.

 Both experiments have new hardware (triggers, Layer 

0, etc.) that will increase sensitivity.

 Increased Luminosity is causing difficulty and making 

analyses more complex

 Please watch talks in parallel sessions!

 I apologize for all the results I didn’t cover


